To Whom It May Concern:

Thank you for considering this letter of recommendation that I am writing on behalf of Don Blazys. My name is Jeff McClellan and I am an educator and mathematician. I earned a B.S. in Mathematics from Harvey Mudd College in Claremont, California in 1992 and will complete an M.S. in Mathematics at the California State University at Los Angeles in May of this year. I have been teaching mathematics professionally for ten years at Immaculate Heart High School and have served as the Science Department Chairperson there for five years. I have also been a teaching assistant at CSULA for the last year. I have a Single Subject Teaching Credential in Mathematics from the State of California.

I have been working with Don for about two years now. I really admire his enthusiasm for mathematics as an amateur and have been impressed by his general knowledge and dedication to his own work. Don has introduced me to some very interesting and thought-provoking concepts. I believe that he has some good ideas that merit further investigation by a professional mathematician who can give his work the time and effort that it deserves. His ideas on “cohesive terms” as he calls them and his ideas for a proof of the Beal conjecture are novel and warrant a proper study. I have not been able to establish any major flaw in the internal logic of his proof but would like to see it worked on by someone who can devote more time to it.

After just a few minutes of talking with Don you can’t help but feel his real passion for mathematics. I urge you to take the time to talk with him and to carefully review his work. Please feel free to contact me if can be of any further assistance.

Respectfully,

[Signature]

Jeffrey R. McClellan
Science Department Chair
25 December 2004

To: Officers and Members of the American Mathematical Society

From: Dr. Ellis D. Miner, Space Scientist, NASA Jet Propulsion Laboratory (retired)

Subj.: Mathematical writings of Mr. Don Blazys

In the course of my 39+ years as a space scientist at Jet Propulsion Laboratory in Pasadena, California, I have been approached by a variety of individuals regarding their "pet" mathematical or scientific theories. In most cases, those theories involved assumptions that could not be backed up by accepted mathematical or scientific formulation. I even began to make a collection of such theories, until the file became too large to effectively save. On occasion, I attempted to respond to such submissions, often leading to continued, but seldom improved, communications. In most cases, I suggested to the authors that they first obtain at least a modicum of formal training in the field about which they were writing before attempting further submissions.

Occasionally, the theories had some merit, and once the formal background was obtained and the individuals worked with specialists in their fields of interest, some useful input into those fields was possible.

About two months ago, I was approached by Don Blazys of Sunland, California, regarding some of his informal papers on mathematical methods and practices. I have perused some of those papers and find at least some of his thoughts and discussions worthy of additional consideration. Unfortunately, he has had little encouragement or direction by professional mathematicians, although some personal friends who are high school or junior college teachers of mathematics have indicated to him that his conclusions are both interesting and logically reached. I encourage officers and members of the American Mathematical Society to give his writings some consideration, and if there is merit in what he has written, to give him encouragement and advice about how to proceed toward publication of those writings.

Sincerely,

[Signature]

Dr. Ellis D. Miner
11335 Sunburst Street
Lake View Terrace, CA 91342
email: ellisbev@comcast.net
September 15, 2003

Mr. Roy Romer
Superintendent
Los Angeles Unified School District
Administrative Offices
333 South Beaudry Avenue
Los Angeles, CA 90017

Re: Eliminating Mathematical Fallacies in Algebra

Dear Mr. Romer:

In January of 1999, I discovered this simple equation:

\[
\frac{U^{(v/2)} \frac{1}{T}}{T} = \left(\frac{U}{T} \right)^{\left(\frac{(v/2)\ln U}{\ln T - 1} \right)} \frac{1}{\ln T - 1}
\]

As you can see, this simple equation is quite remarkable in that it shows the cancellation of T to be meaningless, nonsensical, and impossible, since any such cancellation would clearly result in division by zero. Hence, the consequences and ramifications of this simple equation are enormous, for in teaching our children to perform cancellation, today’s educators are inadvertently and unwittingly instructing them to divide by zero!

Thus, we have a serious issue that warrants our immediate attention and any reasonable person should find this situation disturbing. After all, we cannot continue indoctrinating our children into a system of logic which demands that they divide by zero, any more than we can teach them that the Earth is flat!

Like the Sword of Damocles, this simple equation continues to dangle precariously over our heads. If we choose to study it, then that sword will be ours to wield, and in time, algebra will be transformed into a truly consistent system of logic. However, if we choose to ignore it, then all
teachers of mathematics will suffer great indignation at having been left in the dark when that sword finally drops and the public is made aware of this simple equation.

We must not deny our children the use of this extraordinary mathematical tool; a tool so powerful that its presence in the statements of hitherto intractable problems such as Fermat's Last Theorem and the Beal Conjecture transforms those statements into profound proofs, which are at once both beautiful and elegant.

We must not deny our children the truth, and if algebra is to maintain its integrity, then it must be made consistent with this simple equation, so that its basic tenets are confirmed, rather than contradicted, by its existence.

Algebra must be able to adapt to new discoveries if it is to survive as a viable method by which we solve problems that require a very high order of logic, and in this regard, I feel that I am uniquely qualified to help. I hereby offer my assistance.

You will be pleased to know that several groups of concerned parents, some who are doctors, lawyers, teachers and police officers, have also offered their support in resolving this critical matter. Some of their suggestions are quite novel and I would be happy to share them with you, along with a few ideas of my own.

The task of repairing algebra is daunting and will require the type of strong leadership that someone of your vast experience can provide.

Thank you for your time. I look forward to meeting with you soon. Please call or write and let me know when this can be arranged.

Sincerely,

Don Blazys

Don A. Blazys

DAB:rj

cc: Ms. Diane Masters, Mathematics Department
 Mr. Ashley Dunn, Science Editor of the Los Angeles Times
November 5, 2003

Mr. Don A. Blazys
3115 Foothill Blvd. M-1999
La Crescenta, CA 91214

Dear Mr. Blazys:

Superintendent Roy Romer referred your letter of September 15, 2003, regarding your mathematics research to me. Subsequent to receipt of the letter a meeting between you and Matthias Vheru, LAUSD's Coordinator of Secondary Mathematics, was held on October 2, 2003. At that meeting a productive discussion occurred between you and Mr. Vheru regarding your mathematical discovery, which may have some impact on the teaching of mathematics, particularly algebra. As Mr. Vheru pointed out to you during the meeting, the District does not engage in mathematical research at the level of your work. However, he did promise to provide you with the names and addresses of organizations that do engage in such research. The two best such organizations are as follows:

Mathematics Association of America (MAA)
1529 Eighteenth Street, NW
Washington, DC 20036
(800) 235-7566
maahq@maa.org

National Council of Teachers of Mathematics (NCTM)
1906 Association Drive
Reston, VA 20191
(800) 235-7566
www.NCTM.org
We hope that this information will be helpful to you in your search for validation of your work. Thank you very much for your interest in our mathematics curriculum.

Sincerely,

[Signature]

Dr. Liza Scruggs
Assistant Superintendent
Instructional Support Services

c: Roy Romer
Merle Price
Dianna Masters
Matthias Vheru
Dear Mr. Blazys,

I'm sorry that I can't respond directly to your request. However, to the best of my knowledge, neither the National Council of Teachers of Mathematics (NCTM) nor its research journal (JRME) are appropriate resources for the checking of a mathematical proof. In particular, the work of the JRME panel is to publish quality research in the teaching and learning of mathematics. We would typically not be interested in the proofs of mathematical theorems. The Research Committee of NCTM is similarly interested in scientific research on how mathematics is taught and learned, but not about mathematical results or proofs.

I would suggest the mathematics department of a local university as a starting point for what you are seeking.

With all best wishes,

Steve Williams

Steven R. Williams
Editor Designate
Journal for Research in Mathematics Education
Department of Mathematics Education
Brigham Young University
PO Box 25937
Provo, UT 84602-25937
2003 ANNUAL CONFERENCE
Friday & Saturday, February 28 and March 1, 2003

Experiencing
Meaningful and Creative
Mathematics

An Affiliate of the
National Council of
Teachers of
Mathematics (NCTM)

and the
California Math
Council (CMC)

Bravo Medical Magnet High School
1200 N. Cornwell Street, Los Angeles, CA 90028

• P, 6 - 8, Family Math Week, Charlene Lord Brown & Lisa Peacock, Room 205,
 Get your parents involved by offering a week full of math activities during the school day.
 Come try some activities.

• Q, 9 – 14, New Discoveries in Algebra, Don Blazys, Room 312
 A discussion about recently discovered "cohesive terms" and the dramatic effects they have on basic algebra and fundamental mathematics.

• R, 4 – 8, Rx for x, George Crowder, Room 202
 4th and 5th graders struggling to learn the multiplication facts? Or possibly 8th graders?
 Receive an intervention unit that is a lot more than just the latest in mnemonics.
SIMPLE SOLUTION

A Sunland man is sure he has found an easier way to prove one of math's most complicated theorems

By Claudia Peschiutta, The Leader

SUNLAND — In 1753, Swiss mathematician Leonard Euler claimed to have discovered a proof for it. He was wrong.

In 1947, French mathematician Gabriel Lamé told the Paris Academy that he had found a proof. He was wrong.

In 1994, mathematician Andrew Wiles of Princeton University presented a nearly 200-page proof of the theorem, the result of years of work. He was right.

But Sunland resident Don Blazys is convinced he has found a simpler way to prove Fermat's Last Theorem — in a matter of months.

The theorem, which states there are no whole-number solutions for the equation \(x^n + y^n = z^n \) when the exponent is greater than 2, has puzzled mathematicians since the 17th century, when it was proposed by a French lawyer named Pierre de Fermat.

Blazys, who works as a security supervisor in Pasadena, said he began working on the problem in January after seeing a newspaper article about another amateur mathematician, Andrew Beal.

Beal has proposed a \$1 million prize for the proof of Fermat's Last Theorem.

"There are so many ways to approach the problem and I just happened on the right one," said Blazys.

But he admits that even he doubted himself at first.

"It was just too simple," said Blazys, who spent two days performing his calculations before convincing himself his proof was correct.

"I thought to myself, 'It's gotta be right because it's too beautiful to be wrong!'" he said. "The beauty of it is actually the simplicity of it."

THE BLAZYS FILE

- NAME: Don Blazys
- AGE: 48
- RESIDENCE: Sunland
- FAMILY: Don and his wife, Rebecca, have a 20-year-old son named Lance.
- FAVORITE MATHEMATICIAN: Swiss mathematician Leonard Euler.
- THE DREAM PROBLEM: Blazys said his ultimate math problem would be to learn how to factor any number, no matter how big.
- A BIG INFLUENCE: Blazys credits his high school math teacher, for getting him interested in mathematics because he said she was the first person to tell him he had talent for the subject.

THE PROBLEMS

- FERMAT'S LAST THEOREM
 - A 17th century French lawyer named Pierre de Fermat discovered the field of number theory and developed several theorems, among which the most famous is Fermat's Last Theorem.
 - The theorem states the equation \(x^n + y^n = z^n \) has no whole-number solutions when the exponents are greater than two.

- BEAL'S CONJECTURE
 - Andrew Beal, a Texas banker, recently developed a more general version of Fermat's Last Theorem: Beal's Conjecture states there are no whole-number solutions to the equation \(x^n + y^n = z^n \) when all the exponents are different but less than 31.

However, Sid Kolpas, an associate professor of mathematics at Glendale Community College, is doubtful that Blazys has come up with another proof for the theorem.

"He may be right, but the odds are he's not because this has been kicked around for hundreds of years. It was the impossible dream," Kolpas said.

"I don't think it's going to be easy," said Blazys, who is working on a new paper to prove his theorem. "I want to be sure that I have the right answer before I submit it to a math journal."

"I'm sure there's some kind of subtle flaw," he said.

Blazys said an approach to the problem came to him in his kitchen, over a dinner of macaroni and cheese.

"I'd be working on it while doing anything," said Blazys, who found himself turning the problem over in his head for three months before finding any possible solutions.

He said he submitted his proof of Beal's Conjecture to the American Mathematical Society, based in Providence, R.I.

Blazys said he first became interested in math when he began researching how to build musical instruments in his early 20s and came across logarithms — numbers that show the powers to which certain fixed numbers must be raised to yield specific numbers — which are used in determining musical scales.

To him, reading books on mathematics and playing with proofs is fun.

"Everybody thinks I'm nuts," said Blazys, who believes those who aren't interested in math are missing out on something beautiful.

"The beauty of mathematics is its intrinsic consistency and logic, it's almost like a security blanket," he said. "At least you know that something is certain."

Blazys said he hopes his proof leads to new discoveries and new ways to approaching old problems.

He said he could also lead to a $50,000 prize, which is how much Beal has offered to anyone who proves his conjecture.
Our Own "Good Will Hunting"
By. Debbie Meron ’03

“Everybody thinks I’m nuts,” said Don Blazys, who excitedly relays a love for the same math topics that would have most people running for the hills.

His love of math is the driving force behind this amateur and self-taught mathematician’s delving into some of the field’s most daunting theorems. One in particular, Fermat’s Last Theorem, a problem that has stumped mathematicians since the 17th century, has kept Blazys mind churning for months. The only difference between him and the thousands of expert mathematicians that have attempted to prove the theorem in the past?

He’s actually proven it.

You may not be aware that you are passing a mathematical genius as you leave the lower lot each day. Known by many as Immaculate Heart’s Security Guard Supervisor, Blazys now stands eligible to win the Beal Conjecture Prize, awarding $100,000 for a simplified proof or counterexample to the Beal Conjecture, a generalized version of Fermat’s age-old theorem.

So what does Fermat’s Last Theorem claim? Simply, it states that for the following equation, there are no non-zero integers that can replace x, y, or z, when n is greater than two. $x^n + y^n = z^n$.

The significance of Fermat’s Last Theorem extends beyond a mere brainteaser...
23/09/99

Dr. D. Blazys
8310 Owens Street
Sunland
CA 91040
USA

Dear Dr. Blazys,

Thank you for submitting your paper entitled "Fermat's last theorem" by D. Blazys for possible publication in one of the periodicals of the London Mathematical Society.

We regret to inform you that we shall not be able to publish your paper. There is very great pressure on the publication space in the Journal at present, and although the referee gave some support to your work, we have felt obliged to reject your paper in favour of more highly recommended contributions.

We are sorry that we have had to disappoint you on this occasion, but hope that you will have no difficulty in finding another good journal willing to publish your paper.

Yours sincerely,

[Signature]

Professor J.K. Truss
Professor J.R. Partington

NOTE:

This letter documents that my proof has been refereed by a top ranked math journal and has received some support from both the referee (who did not find a "fatal flaw") and the editor (who suggested that it be submitted to other good journals that may have some publication space available).

[Signature] D. Blazys
December 15, 2010

To Whom It May Concern:

Mr. Don Blazys presented me with some interesting ideas in the field of mathematics. Not being a professional mathematician myself, I submitted Don’s “Proof of Beal’s Conjecture” to three individuals, all of whom are very competent teachers of mathematics. None of the three found any error in Don’s proof and encourage the members of the American Mathematical Society to give his proof the serious consideration it deserves.

It is my understanding that there is a monetary prize for a correct proof of “Beal’s Conjecture”, and it appears that the ongoing lack of consideration for Don’s work may be due to an unjustifiable reluctance to award that prize. I would expect more from high-ranking members of an organization such as the A.M.S.

Sincerely,

[Signature]
Rosemary Hart, IHM